distcc User Manual

Martin Pool mbp@samba.org $Revision: 1.67 $§ $Date: 2002/09/12 11:38:29 §, for distcc-0.10

Contents

1 Introduction

1.1 Overview o e e
1.2 Author. e
1.3 Licence L e
1.4 Security Considerations L e
1.5 Getting Started e
2 Using distcc

2.1 Imvoking distcc L.
2.2 Options o . e
2.3 Environment Variables L L
2.4 Which Jobs are Distributed?
2.5 Running Jobsin Parallelo oo
2.6 Choosing a Host
2.7 Load Distribution Algorithm
2.8 Diagnostic Messages L e
2.9 distcc Exit Codes
2.10 Cross-Compilation e
2.11 distecc Compatibility o

2.11.1 distcc with ccache o

2.11.2 distcc with autoconfo oo

2.11.3 distcc with libtoolo

2.11.4 distcc with MOC
2.12 File Metadata o

3 The distccd Server

3.1 Imvoking distced
3.2 disteed Exit Codeso
3.3 distced Environment Variables 0.0 oo

S S ot ot ot >

o ©o ©o ©

10
11
11
12
12
13
13
14
14
14
15
15
15

4 CONTENTS

4 Bugs and Future Work 19
4.1 Reporting Bugs 19
4.2 Test Suiteo 19
4.3 Known Bugs and Restrictions oo oo 19
4.4 Large-scale Distribution L oo 21
4.5 Execution across SSH 22
4.6 Load Balancing 22

5 Results 25
5.1 Introduction L e 25
5.2 Test Environment L Lo 25
5.3 Samba e 25
5.4 glib. . o 26

6 distcc Internals 27
6.1 Protocol 27
6.2 Working files 28
6.3 Lock files 28

A Detailed Results 29

A1 Results for glib o 29

Chapter 1

Introduction

”Speed, it seems to me, provides the one genuinely modern pleasure.” — Aldous Huxley (1894 -
1963)

1.1 Overview

distcc <http://distcc.samba.org/> is a program to distribute compilation of C or C++ code
across several machines on a network. distcc should always generate the same results as a local
compile, is simple to install and use, and is often significantly faster than a local compile.

Unlike other distributed build systems, distcc does not require all machines to share a filesystem,
have synchronized clocks, or to have the same libraries or header files installed.

Compilation is centrally controlled by a client machine, which is typically the developer’s workstation
or laptop. The distcc client runs on this machine, as does make, the preprocessor, the linker, and
other stages of the build process. Any number of ”volunteer” machines help the client to build
the program, by running the compiler and assembler as required. The volunteer machines run the
distccd daemon which listens on a network socket for requests.

distce sends the complete preprocessed source code across the network for each job, so all it requires
of the volunteer machines is that they be running the distccd daemon, and that they have an
appropriate compiler installed.

distce is designed to be used with GNU make’s parallel-build feature (-j). Shipping files across the
network takes time, but few cycles on the client machine. Any files that can be built remotely are
essentially ”for free” in terms of client CPU.

1.2 Author

distcc was written by Martin Pool. The design is his own invention.

distce was inspired by Andrew Tridgell’s ccache program.

1.3 Licence

distce and the distec User Manual are copyright (C) 2002 by Martin Pool.

5

http://distcc.samba.org/
http://ccache.samba.org/

6 Chapter 1. Introduction

distec is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

Permission is granted to copy, distribute and/or modify the distcc User Manual under the terms
of the GNU Free Documentation License, Version 1.1 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

distcce is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License and GNU Free Documentation
License along with distcc. If not, write to the Free Software Foundation, Inc., 59 Temple Place,
Suite 330, Boston, MA 02111-1307 USA, or see <http://www.gnu.org/licenses/> .

The author understands the GNU GPL to apply to distcc in the following way: you are allowed to
use distcc to compile a non-free program, or to call it from a non-free Make, or to call a non-free
compiler. However, you may not distribute a modified version of distcc unless you comply with
the terms of the GPL: in particular, giving your users access to the source code and the right to
redistribute it, and clearly identifying your changes.

If you find distcc useful, I would appreciate you writing an email to tell me.

1.4 Security Considerations

distcc should only be used on networks where all machines and all users are trusted.

The distcc daemon, distccd, allows other machines on the network to run arbitrary commands
on the volunteer machine. Anyone that can make a connection to the volunteer machine can run
essentially any command as the user running distccd.

distcc is suitable for use on a small to medium network of friendly developers. It’s certainly not
suitable for use on a machine connected to the Internet or a large (e.g. university campus) network
without firewalling in place.

inetd or tcpwrappers can be used to impose access control rules, but this should be done with an
eye to the possibility of address spoofing.

In summary, the security level is similar to that of old-style network protocols like X11-over-TCP,
NFS or RSH.

1.5 Getting Started

Four straightforward steps are required to install and use distcc:

1. Compile and install the distcc package on the client and volunteer machines.
2. Start the distccd daemon on all volunteer machines.

3. On the client, set the DISTCC_HOSTS environment variable to indicate which volunteer machines
to use. For example:

DISTCC_HOSTS=’angry toey:4202 localhost’

http://www.gnu.org/licenses/

1.5. Getting Started 7

4. Set the CC variable or edit Makefiles to prefix distcc to calls to the C/C++ compiler. For
example:

distcc gcc -o hello.o -c hello.c

Chapter 1. Introduction

Chapter 2

Using distcc

2.1 Invoking distcc

distcc is prefixed to compiler command lines and acts as a wrapper to invoke the compiler either on
the local client machine, or on a remote volunteer host.

For example, to compile the standard application program:
distcc gcc -o hello.o -c hello.c

Standard Makefiles, including those using the GNU autoconf/automake system use the $CC variable
as the name of the compiler to run. In most cases, it is sufficient to just override this variable, either
from the command line, or perhaps from your login script if you wish to use distcc for all compilation.
For example:

make CC=’distcc’

2.2 Options

Options to distcc must precede the compiler name. Any arguments or options following the name
of the compiler are passed through to the compiler.

--help

Print a detailed usage message and exit.

—--version

Show distcc version and exit.

2.3 Environment Variables

The way in which distcc runs the compiler is controlled by a few environment variables.
NOTE:

Some versions of make do not export Make variables as environment variables by default. Also,
assignments to variables within the Makefile may override their definitions in the environment that

9

10 Chapter 2. Using distcc

calls make. The most reliable method seems to be to set DISTCC_* variables in the environment of
Make, and to set CC on the right-hand-side of the Make command line. For example:

$ DISTCC_HOSTS=’localhost wistful toey’
$ export DISTCC_HOSTS

$ CC=’distcc’ ./configure

$ make CC=’distcc’ all

Some Makefiles may, contrary to convention, explicitly call gcc or some other compiler, in which
case overriding $CC will not be enough to call distcc. This should be harmless, however: those jobs
will just run locally. The best solution is to update the Makefile to compile and link using $(CC) to
promote future maintainability.

DISTCC_HOSTS

Space-separated list of volunteer host specifications.

DISTCC_VERBOSE

If set to 1, distcc produces explanatory messages on the standard error stream. This can be
helpful in debugging problems. Bug reports should include verbose output.

DISTCC_LOG

Log file to receive messages from distcc itself, rather than stderr.

DISTCC_SAVE_TEMPS

If set to 1, temporary files are not deleted after use. Good for debugging, or if your disks are
too empty.

DISTCC_TCP_CORK

If set to 0, disable use of "TCP corks”, even if they’re present on this system. Using corks
normally helps pack requests into fewer packets and aids performance.

2.4 Which Jobs are Distributed?

Building a C or C++ program on Unix involves several phases:

e Preprocessing source (.c) and headers (.h) to a preprocessed file (.1)

Compiling preprocessed source (.1) to assembly instructions (.s)

Assembling to an object file (. o)

Linking object files and libraries to form an executable, library, or shared library.

distce only ever runs the compiler and assembler remotely. The preprocessor must always run locally
because it needs to access various header files on the local machine which may not be present, or
may not be the same, on the volunteer. The linker similarly needs to examine libraries and object
files, and so must run locally.

The compiler and assembler take only a single input file, the preprocessed source, produce a single
output, the object file. distcc ships these two files across the network and can therefore run the
compiler/assembler remotely.

2.5. Running Jobs in Parallel 11

Fortunately, for most programs running the preprocessor is relatively cheap, and the linker is called
relatively infrequent, so most of the work can be distributed.

distcc examines its command line to determine which of these phases are being invoked, and whether
the job can be distributed. Here is an example of a typical command that can be preprocessed locally
and compiled remotely:

distcc gcc -o hello.o -DGREETING="hello" -c hello.c

The command-line scanner is intended to behave in the same way as gcc. In case of doubt, distcc
runs the job locally.

In particular, this means that commands that compile and link in one go cannot be distributed.
These are quite rare in realistic projects. Here is one example of a command that could not be
distributed, because it calls the compiler and linker

distcc gcc -o hello hello.c

2.5 Running Jobs in Parallel

Moving source across the network is less efficient to compiling it locally. If you have access to
a machine much faster than your workstation, the performance gain may overwhelm the cost of
transferring the source code and it may be quicker to ship all your source across the network to
compile it there.

In general, it is even better to compile on two or machines in parallel. Any number of invocations
of distcc can run at the same time, and they will distribute their work across the available hosts.

distcc does not manage parallelization, but relies on Make or some other build system to invoke
compiles in parallel.

With GNU Make, you should use the -j option to specify a number of parallel tasks slightly higher
than the number of available hosts. For example:

$ export DISTCC_HOSTS=’angry toey wistful localhost’
$ make -j5

2.6 Choosing a Host

The $DISTCC_HOSTS variable tells distcc which volunteer machines are available to run jobs. This is
a space-separated list of host specifications, each of which has the syntax:

HOSTNAME [: PORT]

A numeric TCP port may optionally be specified after a colon. If no port is specified, it uses the
default, which is currently 4200.

If only one invocation of distcc runs at a time, it will always execute on the first host in the list.
(This behaviour is not absolutely guaranteed, however, and may change in future versions.)

The name localhost is handled specially by running the compiler in place.

The daemon may be tested on localhost by setting

12 Chapter 2. Using distcc

DISTCC_HOSTS=127.0.0.1

Although localhost causes distcc to execute the job directly, using an IP address will cause it to
make a TCP connection to a daemon on localhost. This is slower, but useful for testing.

2.7 Load Distribution Algorithm

When distce is invoked, it needs to decide which of the volunteers in DISTCC_HOSTS should be used
to compile a job. It uses a simple heuristic to try to spread load across machines appropriately.

You can imagine all of the compile machines as being leaky buckets, some with larger holes (faster
CPUs) than others. The distcc client tries to keep water at the same level on each one (the same
number of jobs running), preferring hosts occurring earlier in DISTCC_HOSTS. Over the course of a
build, the faster machines will complete jobs more quickly, and therefore be topped up more quickly
and do more work overall, but without the client ever actually needing to know which one is fastest.

This design has the advantage of not requiring the client to know in advance the speeds of the volun-
teers, and being quite simple to implement. It copes quite well with machines that are temporarily
slowed down: they are just topped-up more slowly in the future.

Scheduling is coordinated between different invocations of the distcc client by lockfiles in the
temporary directory. There is no coordination between clients running as different users, on different
hosts, or with different TMPDIR paths.

On Linux, scheduling slightly too many jobs on any machine is quite harmless, as long as the number
is not so high that the machine begins thrashing. So it’s OK to provide a -j number substantially
higher than the number of available processors.

The biggest problem with this design is that it handles multiprocessor machines poorly: they prob-
ably ought to have jobs scheduled proportional to the number of processors. At the moment, the
best thing is to run with a -j factor equal to the product of the maximum number of CPUs in any
machine (MAX_CPUS) and the number of machines. This should make sure that roughly MAX_CPUS
tasks run on every machine at all times, and will therefore keep all CPUs loaded, but will cause
excessive task-switching on machines with fewer CPUs. Task switching is not very expensive on
Linux so it is not a big problem, but it does lose a few percentage points of speed. This should be
fixed in a future release.

2.8 Diagnostic Messages

Error messages or warnings from local or remote compilers are passed through to diagnostic output
on the client. The compiler takes all file names and line numbers from pragmas in the preprocessed
output, so error messages will always have the correct pathnames for files on the client.

distcc prints a message when it runs a command locally or remotely. For more information, set
$DISTCC_VERBOSE and look at the server’s log file.

By default, distcc prints diagnostic messages to stderr. Sometimes these are too intrusive into the
output of the regular compiler, and so they may be selectively redirected by setting the $DISTCC_LOG
environment variable to a filename.

The current version of the distcc daemon writes diagnostic messages only to files on its own machine.
(By default, it uses the syslog daemon channel.) If compilation is failing, please examine the log file
on the relevant volunteer machine.

2.9. distcc Exit Codes 13

2.9 distcc Exit Codes

The exit code of distcc is normally that of the compiler: zero for successful compilation and non-zero
otherwise.

If distcc fails to distribute a job to a selected volunteer machine, it will try to run the compiler
locally on the client. distcc only tries a single remote machine for each job.

distce tries to distinguish between a failure to distribute the job, and a ”genuine” failure of the
compiler on the remote machine, for example because of a syntax error in the program. In the
second case, distcc does not re-run the compiler locally, and returns the same exit code as the

remote compiler.

If distcc fails to run the compiler, it may return one one of the following error codes. These are also
used by distced.

100 EXIT DISTCC_FAILED

Generic or unspecified failure in distcc.

102 EXIT_BIND_FAILED

Failed to bind and listen on network socket. Port may already be in use.

103 EXIT_CONNECT_FAILED
Failed to establish network connection or listen on socket. The host may be invalid or un-
reachable, or there may be no daemon listening.

104 EXIT_COMPILER_CRASHED
The underlying compiler exited because of a signal. This probably indicates a compiler bug,
or a problem with the hardware or OS on the server.

105 EXIT_OUT_OF_MEMORY

Obvious.

106 EXIT_BAD_HOSTSPEC

$DISTCC_HOSTS was undefined, empty, or syntactically invalid. (At the moment, you should
never see this code because distce will fall back to building locally. Let me know if you would
prefer a hard error.)

2.10 Cross-Compilation

Cross compilation means building programs to run on a machine with a different processor, architec-
ture, or operating system to where they were compiled. distcc supports cross compilation, including
teams of mixed-architecture machines, although some changes to the compilation commands may
be required.

The compilation command passed to distcc must be one that will execute properly on every vol-
unteer machine to produce an object file of the appropriate type. If the machines have different
processors, then simply using distcc cc will probably not work, because that will normally invoke
the volunteer’s native compiler.

Machines with the same instruction set but different operating systems may not necessarily generate
compatible .o files. Empirically it seems that the native FreeBSD compiler generates object files

14 Chapter 2. Using distcc

compatible with Linux for C programs, but not for C4++. It may be a good idea to install a Linux
cross compiler on BSD volunteers.

Different versions of the compiler may generate incompatible object files. This seems to be much
more of a problem with C++ than with C, because the C++ ABI (application binary interface) has
changed in recent years. If you will be building C++ programs, it may be a good idea to install the
same version of g++ on all machines.

gcc has two options to select at run time the target platform (-b) and the gec version (V) to be
used. Several different gcc configurations can be installed side-by-side on any machine, and these
options are used by the top-level "driver” program to switch between them. For more information,
see Specifying Target Machine and Compiler Version in the gcc manual.

For example, adding -b i386-1inux to $CFLAGS ought to make sure the correct compiler is invoked
to build Linux/x86 programs. This has no particular effect if all the volunteers are natively of that
type, but is very useful if some of the volunteer machines are different: either the correct compiler
will be used, or you will see an error message like this if it is not installed.

gcc: installation problem, cannot exec ‘cppO’: No such file or directory
gcc: file path prefix ¢/usr/lib/gcc-1ib/i386-freebsd/2.95.4/’ never used

The parts of gcc particular to target machines and versions are normally kept in the directory
/usr/local/lib/gcc-1ib/MACHINE/VERSION.

Alternatively, you might specify as the compiler command the name of a script or symbolic link that
calls the appropriate version of gcc on each machine. For example:

CC=’distcc gcc-i386-linux’

In general, using the -b option is probably better, because it does not require any special creation
of scripts on the volunteer machines beyond installing the appropriate gcc configuration. However,
using a special compiler name may be useful if you need to make sure that a particular version of
gec’s driver program is used, perhaps because you are testing gcc. This approach might also be
useful with compilers other than gce that have no built-in mechanism for choosing a target.

Suggestions for other ways to support cross-compilation or automatically detecting incompatibilities
are welcome.

2.11 distcc Compatibility

2.11.1 distcc with ccache

distcc works well with the ccache tool for caching compilation results. To use the two of them
together, simply set

CC=’ccache distcc’

2.11.2 distcc with autoconf

distcc works quite well with autoconf.

DISTCC_VERBOSE can give autoconf trouble because autoconf tries to parse error messages from the
compiler. If you redirect distcc’s diagnostics using DISTCC_LOG then it seems to be fine.

http://ccache.samba.org/

2.12. File Metadata 15

Some autoconf-based systems ”freeze” the compiler name used for configure into their Makefiles. To
make them use distce, you must either set $CC when running ./configure, and/or override $CC on
the right-hand-side of the Make command line.

Some poorly-written shell scripts may assume that $CC is a single word. At the moment the best
fix is to use a shell script that calls distcc.

2.11.3 distcc with libtool

Some versions of libtool seem not to cope well when CC is set to more than one word, such as
"distcc gcc". The problem is under investigation.

2.11.4 distcc with MOC

MOC is the Qt meta-object compiler.

2.12 File Metadata

distcc transfers only the binary contents of source, error, and object files, without any concern for
metadata, attributes, character sets or end-of-line conventions.

distce never transmits file times across the network or modifies them, and so should not care whether
the clocks on the client and volunteer machines are synchronized or not. When an object file is
received onto the client, its modification time will be the current time on the client machine.

16

Chapter 2. Using distcc

Chapter 3

The distccd Server

The distced server may be started either from a super-server such as inetd, or as a stand-alone
daemon.

distced does not need to run as root and should not.

distced does not have a configuration file; it’s behaviour is controlled only by command-line options
and requests from clients.

3.1 Invoking distccd

These options may be used for either inetd or standalone mode.

--help

Explains usage of the daemon and exits.

--version

Shows the daemon version and exits.

-N, -—nice NICENESS

Makes the daemon more nice about giving up the CPU to other tasks on the machine. NICE-
NESS is a value from 0 (regular priority) to 20 (lowest priority). This option is good if you
want to run distced in the background on a machine used for other purposes.

-p, ——port PORT

Set the TCP port to listen on. (Standalone mode only.)

-P, --pid-file FILE

Save daemon process id to file.

—verbose

Include debug messages in log.

—--no-fork

Don’t fork or detach (for debugging).

17

18 Chapter 3. The distccd Server

--no-fifo
Send input to the compiler by writing to a temporary file, rather than using a pipe. This is
required when the server’s temporary directory is on NFS, on at least some machines. It may

be faster in some circumstances, but probably is not.

--log-file=FILE

Send messages here instead of syslog.

--log-stderr
Send log messages to stderr, rather than to a file or syslog. This is mainly intended for use in
debugging.

--inetd

Serve a client connected to stdin/stdout. As the name suggests, this option should be used
when distced is run from within a super-server like inetd. distccd assumes inetd mode when

stdin is a socket.

—-daemon

Bind and listen on a socket, rather than running from inetd. This is used for standalone mode.
distced assumes daemon mode at startup if stdin is a tty, so ——daemon should be explicitly
specified when starting distccd from a script or in a non-interactive ssh connection.

3.2 distced Exit Codes

As for distce 2.9 ().

3.3 distccd Environment Variables

DISTCC_SAVE_TEMPS
If set to 1, temporary files are not deleted after use. Good for debugging.

Chapter 4

Bugs and Future Work

4.1 Reporting Bugs

If you think you have found a bug, please check the manual and the HACKING file to see if it is a
known restriction. If not, please send a clear and detailed report to Martin Pool mbp@samba.org.
(For a clear and detailed description of ”clear and detailed”, see Simon Tatham’s advice on reporting
bugs, <http://www.chiark.greenend.org.uk/ sgtatham/bugs.html> .)

4.2 Test Suite

distcc has a test suite written in Python using the PyUnit <http://pyunit.sourceforge.net/>

framework. It does not yet exercise all functionality, but is improving. If you discover a bug, or write
new functionality, please try to add corresponding tests to make sure that the fix keeps working in
the future.

4.3 Known Bugs and Restrictions

There are no known cases where distcc will produce incorrect code, but they may exist. There are
some restrictions on distcc, and some possible optimizations that are not yet implemented.

An important general goal is that the code should stay as simple as possible, and secondarily be
portable to reasonably current Unix-like systems. Complicating the code, or adding large depen-
dencies is undesirable unless there’s an overwhelming advantage.

e distcc needs to handle $COMPILER_PATH and $GCC_EXEC_PREFIX in some sensible way, if there
is one. Not urgent because I have never heard of them being used.

e distcc might usefully verify that the compiler versions and critical parameters are compatible
on all machines, for example by running -V. This really should be done in a way that preserves
the simplicity of the protocol: we don’t want to interactively query the server on each request.
Perhaps distcc ought to add -b and -V options to the compiler, based on whatever is present
on the current machine? Or perhaps the user should just do this.

e distcc could reasonably not transmit -D, -I and any other options that we’re sure are handled
only by the preprocessor. This would make the server logs slightly more clear and readable
and possibly be a very tiny performance boost.

19

http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
http://pyunit.sourceforge.net/

20

Chapter 4. Bugs and Future Work

distcc also needs some standard scripts for doing performance measurement.

Server-side errors are not directly visible to the client. (The user needs to look at the server’s
log file.) The server’s error messages should be passed back to the client.

Compressing network traffic (probably using gzip) might help when the network is much slower
than the CPUs. gzip -3 is cheaper in CPU than cpp and gives a substantial reduction in the
size of a .1 file.

distcc waits for too long on unreachable hosts. We probably need to timeout after about a
second and build locally. Probably this should be implemented by connect () in non-blocking
mode, bounded by a select.

The client should have a medium-term local cache about unusable servers, to avoid always
retrying connections. Several different cases (unreachable, host down, server down, server
broken) will produce slightly different errors.

Attackers can cause arbitrary damage if they can connect to the volunteer’s port, or imperson-
ate a volunteer. distcc should therefore only be used on trusted networks. Running over ssh
or some other security mechanism might be possible, but will cause some performance loss.

4200 is not a registered port; I just picked it out of my hat. If distcc proves popular, it ought
to get a proper TANA-allocated port and service name. 4200 is in fact already registered to
"VRML Multi User Systems”.

distce has only been tested on GNU/Linux and BSD. It probably will have minor portability
bugs on other platforms.

distce ought to work with compilers other than GNU cc, but it has not been tested.

If a Makefile contains race conditions that make it unsafe for parallel execution then distcc
will lose in the same way as a local compiler. Limitations of the Make language mark it hard
to write some parallel rules correctly.

If the Makefile hardcodes the name of the compiler rather than using $(CC) then it may have to
be updated to work properly. ccache handles these situations by allowing itself to be installed
in place of gcc. It examines the name under which it was invoked and decides to run another
compiler. It may be possible for distcc to piggy-back on that.

There are probably some valid compiler command lines that distcc will fail to understand, and
which will therefore be run locally rather than distributed. cc argument parsing is complex
and not completely standardized.

distcc (by design) can’t handle compilers that need to read other files from the local filesystem.
This might be a problem with such things as profile-directed optimizers. distcc tries to detect
such commands and run them locally, but there may be cases which are not handled properly.

distcc’s protocol and file IO would probably have trouble with source or object files over 2GB
in size. I’ve never heard of a .c or .o file that large, and I rather suspect gcc would not handle
them well either.

distcc has no protection against network transmission errors other than that in TCP and
Ethernet (which are actually generally quite good.) In that respect it is like FTP, NFS, HTTP,
and most others. Using gzip compression would allow strong error detection, and using ssh
would allow strong error correction. Alternatively we might just send a checksum (e.g. MD4)
of the files.

4.4.

Large-scale Distribution 21

A GUI to show progress of compilation and distribution of load would be neat. Probably the
most sensible way is to make it parse $DISTCC_LOG.

Sometimes cc is used just for assembly. This too could be done remotely, by handling the .s
extension as preprocessed source, and .S as unpreprocessed source.

distcc could support cross-compilation by a per-volunteer option to override the compiler name.
On the local host, it might invoke gcc directly, but on some volunteers it might be necessary
to specify a more detailed description of the compiler to get the appropriate cross tool. This
might be insufficient for Makefiles that need to call several different compilers, perhaps gcc
and g++ or different versions of gcc. Perhaps they can make do with changing the DISTCC
host settings at appropriate times.

distcc ought not to write any messages to stderr unless there really is a problem or warning or
verbosity has been requested, because it confuses ccache.

distce could easily handle IPv6, but it doesn’t yet. The new sockets API does not work properly
on all systems, so we need to support both.

We ought to link against the tcpwrappers library to allow access control through
/etc/hosts.allow. That’s a moderately good level of security: certainly much cheaper than
SSH. Unfortunately this may suddenly break daemons, because many machines are configured
to disallow everything by default. We need to either make it a configure option, or just put a
big warning in the documentation.

It would be nice to have a --ping client option to contact all the remote servers, and perhaps
return some kind of interesting information. This is almost certainly just chrome; though.

It would be nice to put distcc and appropriate compilers on the

LNX-BBC <http://www.lnx-bbc.org/> . This could be pretty small because only the com-
piler would be required, not header files or libraries.

Also, it would be nice to have an easily installable package for Windows that makes the machine
be a Cygwin-based compile volunteer. It probably needs to include cross-compilers for Linux
(or whatever), or at least simple instructions for building them.

Automatic detection (”zero configuration”) of compile volunteers is probably not a good idea,
because it might be complicated to implement, and would possibly cause breakage by dis-
tributing to machines which are not properly configured.

Notwithstanding the previous point, centralized configuration for a site would be good, and
probably quite practical. Setting up a list of machines centrally rather than configuring each
one sounds more friendly. The most likely design is to use DNS SRV records (RFC2052), or
perhaps multi-RR A records. For exmaple, compile.ozlabs.foo.com would resolve to all
relevant machines. Another possibility would be to use SLP, the Service Location Protocol,
but that adds a larger dependency and it seems not to be widely deployed.

4.4 Large-scale Distribution

distce in it’s present form works well on small numbers of close machines owned by the same people.

It might be an interesting project to investigate scaling up to large numbers of machines, which

potentially do not trust each other. This would make distcc somewhat more like other ”peer-to-

peer” systems like Freenet and Napster.

http://www.lnx-bbc.org/

22 Chapter 4. Bugs and Future Work

4.5 Execution across SSH

Running distcc across OpenSSH <http://www.openssh.org/> has several security advantages and
should be supported in the future. They include:

1. Volunteer machines will not need to open an additional network-facing service.
2. Only authenticated users can use a volunteer machine.

3. Clients have some guarantees that their connections to a volunteer are not being spoofed.

Using SSH is greatly preferable to developing and maintaining a custom security protocol.

If the client or volunteer is subverted, then the other party is not protected. (For example, if
the administrator of the volunteer is malicious, or if the volunteer has been compromised, then
compilation results might contain trojans.) However, this is the case for practically every Internet
protocol.

Using SSH will consume some CPU cycles in computation on both client and volunteer.

A simple implementation would be trivial, since the daemon already works on stdin/stdout. However,
this might perform poorly because SSH takes quite a long time to open a connection.

Connections should be hoarded by the client. If the client doesn’t already have an ssh connection to
the server, distcc should fork, with a background task holding the connection open and coordinating
access.

4.6 Load Balancing

When running a job locally (such as cpp or 1d), distcc ought to count that against the load of
localhost. At the moment it is biased towards too much local load.

distce needs a way to know that some machines have multiple CPUs, and should accept a propor-
tionally larger number of jobs at the same time. It’s not clear whether multiprocessor machines
should be completely filled before moving on to another machine.

If there are more parallel invocations of distcc than available CPUs it’s not clear what behaviour
would be best. Options include having the remaining children sleep; distributing multiple jobs across
available machines; or running all the overflow jobs locally.

In fact, on Linux it seems that running two tasks on a CPU is not much slower than running a single
task, because the task-switching overhead is pretty low.

Problems tend to occur when we run more jobs than will fit into available physical memory. It
might be nice if there was a ”batch mode” scheduler that would finish one before running the next,
but in the absence of that we have to do it ourselves. I can’t see any clean and portable way to
determine when the compiler is using too much memory: it would depend on the RSS of the compiler
(which depends on the source file), on the amount of memory and swap, and on what other tasks are
running. In addition, on some small boxes compiling large code, you may actually want (or need)
to have it swap sometimes.

In addition, it might be nice to have a --max-1load option, as for GNU Make, to tell it not to accept
more than one job (or more than zero?) when the machine’s load average is above that number. We
can try calling getloadavg(), which should exist on Linux and BSD, but apparently not on Solaris.
Can take patches later.

http://www.openssh.org/

4.6. Load Balancing 23

A server-side administrative restriction on the number of consecutive tasks would probably be a
sufficient approximation.

Oscar Esteban suggests that when the server is limiting accepted jobs, it may be better to have it
accept source, but defer compiling it. This implies not using fifos, even if they would otherwise be
appropriate. This may smooth out network utilization. There may be some undesirable transient
effects where we’re waiting for one small box to finish all the jobs it has queued.

24

Chapter 4. Bugs and Future Work

Chapter 5

Results

5.1 Introduction

The purpose of distcc is to reduce elapsed time to build from a clean directory.
The most important result is elapsed time, measured by time (1) on the client machine.

Non-blank, non-comment physical lines of code are measured using wc -1 $(find . -name
>%. [ch]”).

One complete build is run before measurement to attempt to minimize disk caching effect. make
distclean is run between builds.

5.2 Test Environment
Machines used for testing:

anomic, jonquille, nevada

Hewlett-Packard X2000 Linux workstations, 1x1GHz Pentium IV, 1GB RAM, 1x20GB SCSI,
Linux 2.4.18, Debian GNU/Linux, ext3fs, Debian’s gce-2.95.4.

anomic, jonquille and nevada are connected by a 10Mbps non-switched Ethernet hub.
Machines may be interactively used during testing but are generally lightly loaded.

The timebuild script in the source directory (after 0.2) is used to repeatedly build programs for
measurement.

5.3 Samba

More results using cvs head as of Wed May 15 17:44:47 EST 2002
Building samba head, using plain gcc on anomic:

time make:

time DISTCC_HOSTS=’localhost jonquille nevada’ make -j4

25

26 Chapter 5. Results

real 4m4 .402s
user 3m41.120s
sys Om13.460s

time make CC=gcc
real Tm15.747s
user 6m40.920s
sys Om14.460s

Notes: Samba uses lots of header files in every source file, so the preprocessed source is very large,
and it is also typically slow to compile on single machines.

5.4 glib

Using distce CVS on 20 May 2002, building glib-2.0.1 (100,911 lines in *. [ch]).

autoconf-generated configure scripts run compilations in series, so represent a worst case for distcc.
When jonquille is the first nominated host, all work will be done remotely, and the configure script
runs 4.34s (26%) slower. When localhost is first, all work is done locally and the overhead of running
through distce is 0.68s (4%) elapsed time.

Note that using distcc should never make any difference to the results of the configure script, as-
suming that all the installed compilers behave equivalently.

Chapter 6

distcc Internals

6.1 Protocol

distcc uses a simple, application-specific protocol running directly over a TCP socket. A new request
socket is opened for each job.

The request and response begin with a magic number and version number, allowing incompatible
versions or misconfigurations to be identified. At the moment there is only one deployed protocol
version, and no attempt to support backward or forward compatibility, though this could be added
in the future.

The request and response consist of tagged, length-preceded elements. Each element of the request
contains a four-character ASCII token, an eight-digit ASCII hexadecimal length or value, and,
depending on the tag, a byte stream whose length is determined by the hexadecimal field.

The complete request is sent to the server before the reply begins. Opening the TCP socket is
performed concurrently with execution of the preprocessor on the client.

The request from the client contains

1. Magic number and version
2. Compiler command line

3. Preprocessed source code
The response from the server contains

1. Magic number and version
2. Compiler exit code & status
3. Compiler error messages

4. Compiler stdout

5. Object file (if any)

Consult the source for more information.

27

28 Chapter 6. distcc Internals

6.2 Working files

distcc stores working files in a subdirectory of /tmp. These include synchronization files, and compiler
input/output temporary files.

Temporary files should normally be cleaned up when the program exits. If distcc misbehaves, these
files may be useful in tracking down the cause. Any that remain can be removed by the system’s
temporary file reaper, or by hand.

6.3 Lock files

distcc uses lock files to allow each client to balance its jobs across available volunteer machines. For
each volunteer host, a zero-length file is created. Clients using that volunteer hold a flock lock on
the file while running.

Appendix A

Detailed Results

A.1 Results for glib

CC=gcc

time make

real Om41.326s
user Om34.430s
sys Om5.380s

time make -j3

real Om42.148s
user Om35.280s
sys Om4.970s

export DISTCC_HOSTS=’localhost jonquille nevada’
export CC=’distcc gcc’

make distclean

time ./configure

real Om16.948s

user Om10.740s

sys Om4.410s

time make

real Om42.290s
user Om35.000s
sys Om5.710s

time make -j3

real Om28.121s
user Om20.650s
sys Om5.740s

time make -j5

real Om28.777s
user Om21.060s
sys Om5.410s

29

30

export CC=’distcc gcc’

export CFLAGS=’-pipe’

make
time
real
user

sys

make
real
user
sys

make
real
user

sys

make
real
user

sys

distclean

./configure
Om15.672s
Om10.020s
Om4.030s

clean; time make
Om25.287s
Om19.130s
Om4.800s

clean; time make -j3
0m20.921s
O0m14.700s
Om4 .830s

clean; time make -j5
Om20.738s
Om14.060s
Om4.910s

export CC=’gcc’
export CFLAGS=’-pipe’

make
time
real
user

sys

make
real
user

sys

make
real
user

sys

distclean

./configure
Om15.336s
Om9.340s
Om4.360s

clean; time make
Om24.841s
Om18.980s
Om4.610s

clean; time make -j3
Om24.446s
Om18.910s
Om4 .550s

Appendix A. Detailed Results

	Introduction
	Overview
	Author
	Licence
	Security Considerations
	Getting Started

	Using distcc
	Invoking distcc
	Options
	Environment Variables
	Which Jobs are Distributed?
	Running Jobs in Parallel
	Choosing a Host
	Load Distribution Algorithm
	Diagnostic Messages
	distcc Exit Codes
	Cross-Compilation
	distcc Compatibility
	distcc with ccache
	distcc with autoconf
	distcc with libtool
	distcc with MOC

	File Metadata

	The distccd Server
	Invoking distccd
	distccd Exit Codes
	distccd Environment Variables

	Bugs and Future Work
	Reporting Bugs
	 Test Suite
	Known Bugs and Restrictions
	Large-scale Distribution
	Execution across SSH
	Load Balancing

	 Results
	Introduction
	Test Environment
	Samba
	glib

	distcc Internals
	 Protocol
	 Working files
	 Lock files

	Detailed Results
	Results for glib

